js編碼方式 (須引入sha256.js, utf8.js)
drupal 參考
from http://www.movable-type.co.uk/scripts/sha256.html
Sha256.hash(data.name);
php編碼方式
hash('sha256', $data);
drupal 參考
► sha256.js/** * Calculates a base-64 encoded, URL-safe sha-256 hash. * @param $data * String to be hashed. * @return * A base-64 encoded sha-256 hash, with + replaced with -, / with _ and any = padding characters removed. */ function drupal_hash_base64($data) { $hash = base64_encode(hash('sha256', $data, TRUE)); // Modify the hash so it's safe to use in URLs. return strtr($hash, array('+' => '-', '/' => '_', '=' => '')); } /** * Calculates a base-64 encoded, URL-safe sha-256 hmac. * @param $data * String to be validated with the hmac. * @param $key * A secret string key. * @return * A base-64 encoded sha-256 hmac, with + replaced with -, / with _ and any = padding characters removed. */ function drupal_hmac_base64($data, $key) { $hmac = base64_encode(hash_hmac('sha256', $data, $key, TRUE)); // Modify the hmac so it's safe to use in URLs. return strtr($hmac, array('+' => '-', '/' => '_', '=' => '')); }
►Utf8.jsvar Sha256 = {}; // Sha256 namespace /** * Generates SHA-256 hash of string * * @param {String} msg String to be hashed * @param {Boolean} [utf8encode=true] Encode msg as UTF-8 before generating hash * @returns {String} Hash of msg as hex character string */ Sha256.hash = function(msg, utf8encode) { utf8encode = (typeof utf8encode == 'undefined') ? true : utf8encode; // convert string to UTF-8, as SHA only deals with byte-streams if (utf8encode) msg = Utf8.encode(msg); // constants [§4.2.2] var K = [0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2]; // initial hash value [§5.3.1] var H = [0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19]; // PREPROCESSING msg += String.fromCharCode(0x80); // add trailing '1' bit (+ 0's padding) to string [§5.1.1] // convert string msg into 512-bit/16-integer blocks arrays of ints [§5.2.1] var l = msg.length/4 + 2; // length (in 32-bit integers) of msg + ‘1’ + appended length var N = Math.ceil(l/16); // number of 16-integer-blocks required to hold 'l' ints var M = new Array(N); for (var i=0; i<N; i++) { M[i] = new Array(16); for (var j=0; j<16; j++) { // encode 4 chars per integer, big-endian encoding M[i][j] = (msg.charCodeAt(i*64+j*4)<<24) | (msg.charCodeAt(i*64+j*4+1)<<16) | (msg.charCodeAt(i*64+j*4+2)<<8) | (msg.charCodeAt(i*64+j*4+3)); } // note running off the end of msg is ok 'cos bitwise ops on NaN return 0 } // add length (in bits) into final pair of 32-bit integers (big-endian) [§5.1.1] // note: most significant word would be (len-1)*8 >>> 32, but since JS converts // bitwise-op args to 32 bits, we need to simulate this by arithmetic operators M[N-1][14] = ((msg.length-1)*8) / Math.pow(2, 32); M[N-1][14] = Math.floor(M[N-1][14]) M[N-1][15] = ((msg.length-1)*8) & 0xffffffff; // HASH COMPUTATION [§6.1.2] var W = new Array(64); var a, b, c, d, e, f, g, h; for (var i=0; i<N; i++) { // 1 - prepare message schedule 'W' for (var t=0; t<16; t++) W[t] = M[i][t]; for (var t=16; t<64; t++) W[t] = (Sha256.sigma1(W[t-2]) + W[t-7] + Sha256.sigma0(W[t-15]) + W[t-16]) & 0xffffffff; // 2 - initialise working variables a, b, c, d, e, f, g, h with previous hash value a = H[0]; b = H[1]; c = H[2]; d = H[3]; e = H[4]; f = H[5]; g = H[6]; h = H[7]; // 3 - main loop (note 'addition modulo 2^32') for (var t=0; t<64; t++) { var T1 = h + Sha256.Sigma1(e) + Sha256.Ch(e, f, g) + K[t] + W[t]; var T2 = Sha256.Sigma0(a) + Sha256.Maj(a, b, c); h = g; g = f; f = e; e = (d + T1) & 0xffffffff; d = c; c = b; b = a; a = (T1 + T2) & 0xffffffff; } // 4 - compute the new intermediate hash value (note 'addition modulo 2^32') H[0] = (H[0]+a) & 0xffffffff; H[1] = (H[1]+b) & 0xffffffff; H[2] = (H[2]+c) & 0xffffffff; H[3] = (H[3]+d) & 0xffffffff; H[4] = (H[4]+e) & 0xffffffff; H[5] = (H[5]+f) & 0xffffffff; H[6] = (H[6]+g) & 0xffffffff; H[7] = (H[7]+h) & 0xffffffff; } return Sha256.toHexStr(H[0]) + Sha256.toHexStr(H[1]) + Sha256.toHexStr(H[2]) + Sha256.toHexStr(H[3]) + Sha256.toHexStr(H[4]) + Sha256.toHexStr(H[5]) + Sha256.toHexStr(H[6]) + Sha256.toHexStr(H[7]); } Sha256.ROTR = function(n, x) { return (x >>> n) | (x << (32-n)); } Sha256.Sigma0 = function(x) { return Sha256.ROTR(2, x) ^ Sha256.ROTR(13, x) ^ Sha256.ROTR(22, x); } Sha256.Sigma1 = function(x) { return Sha256.ROTR(6, x) ^ Sha256.ROTR(11, x) ^ Sha256.ROTR(25, x); } Sha256.sigma0 = function(x) { return Sha256.ROTR(7, x) ^ Sha256.ROTR(18, x) ^ (x>>>3); } Sha256.sigma1 = function(x) { return Sha256.ROTR(17, x) ^ Sha256.ROTR(19, x) ^ (x>>>10); } Sha256.Ch = function(x, y, z) { return (x & y) ^ (~x & z); } Sha256.Maj = function(x, y, z) { return (x & y) ^ (x & z) ^ (y & z); } // // hexadecimal representation of a number // (note toString(16) is implementation-dependant, and // in IE returns signed numbers when used on full words) // Sha256.toHexStr = function(n) { var s="", v; for (var i=7; i>=0; i--) { v = (n>>>(i*4)) & 0xf; s += v.toString(16); } return s; }
var Utf8 = {}; // Utf8 namespace /** * Encode multi-byte Unicode string into utf-8 multiple single-byte characters * (BMP / basic multilingual plane only) * * Chars in range U+0080 - U+07FF are encoded in 2 chars, U+0800 - U+FFFF in 3 chars * * @param {String} strUni Unicode string to be encoded as UTF-8 * @returns {String} encoded string */ Utf8.encode = function(strUni) { // use regular expressions & String.replace callback function for better efficiency // than procedural approaches var strUtf = strUni.replace( /[\u0080-\u07ff]/g, // U+0080 - U+07FF => 2 bytes 110yyyyy, 10zzzzzz function(c) { var cc = c.charCodeAt(0); return String.fromCharCode(0xc0 | cc>>6, 0x80 | cc&0x3f); } ); strUtf = strUtf.replace( /[\u0800-\uffff]/g, // U+0800 - U+FFFF => 3 bytes 1110xxxx, 10yyyyyy, 10zzzzzz function(c) { var cc = c.charCodeAt(0); return String.fromCharCode(0xe0 | cc>>12, 0x80 | cc>>6&0x3F, 0x80 | cc&0x3f); } ); return strUtf; } /** * Decode utf-8 encoded string back into multi-byte Unicode characters * * @param {String} strUtf UTF-8 string to be decoded back to Unicode * @returns {String} decoded string */ Utf8.decode = function(strUtf) { // note: decode 3-byte chars first as decoded 2-byte strings could appear to be 3-byte char! var strUni = strUtf.replace( /[\u00e0-\u00ef][\u0080-\u00bf][\u0080-\u00bf]/g, // 3-byte chars function(c) { // (note parentheses for precence) var cc = ((c.charCodeAt(0)&0x0f)<<12) | ((c.charCodeAt(1)&0x3f)<<6) | ( c.charCodeAt(2)&0x3f); return String.fromCharCode(cc); } ); strUni = strUni.replace( /[\u00c0-\u00df][\u0080-\u00bf]/g, // 2-byte chars function(c) { // (note parentheses for precence) var cc = (c.charCodeAt(0)&0x1f)<<6 | c.charCodeAt(1)&0x3f; return String.fromCharCode(cc); } ); return strUni; }
from http://www.movable-type.co.uk/scripts/sha256.html